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Abstract: In software engineering, the most frequent problem highlighted by IT Practioners concerned the 

measurement of quality. In order to improve the quality of the software, fault prediction is the necessary task. This 

prediction reduces the time complexity between modules. In the recent years lot of software metrics are used for 

predicting whether the particular models of the software faulty are fault free. In this paper we have proposed K-Jensen 

Shannon Entropy Model based Clustering Algorithm for predicting the faults in software projects. In our experiment, 

we used CM1, PC1, KC1, KC2 and PC4 collected from NASA MDP. Finally, our proposed system is compared with 

Euclidean distance based K-Means Clustering Algorithm. 
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I. INTRODUCTION 

Software Fault Prediction is an important analysis in 

software development life cycles, which avoid many 

problems in software process and improve the quality of 

the required software and also reduce the time complexity. 

The main objectives of this prediction whether the 

software development process, the required models of the 

software is fault are fault free. Many researchers have 

already predict massive  metrics and techniques like 

correlation, data mining algorithms, decision tree, neural 

networks, genetic algorithm, SVM Classification, Naïve 

Bayes Classification have been analyzed for fault 

prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
              Fig-1 Software Fault Prediction Model 

II. RELATED WORKS 

Vikas Gupta et al summarized the basic concepts of 

clustering and analyze the fault prediction based on JEdit 

open source software. They implemented K-Means 

clustering based classification of software modules into 

faulty or non-faulty.  

Meenatsh P.C et al proposed fault prediction using EM 

based Quad tree also not fit to be prediction of software.  

Ajeet kumar pandey et al predicted faults in various 

software software model based on Fuzzy logic. The 

ultimate goal of this paper is to improving the software 

reliability and portability. Pradeep Singh et al proposed 

software fault prediction model using clustering based 

classification based on learning systems. 

Turhan et al analyzed the software faults based on 

Weighted Naïve Bayes classification algorithm which 

have performed Static code attributes such as lines of 

code, size of the complexity.Menzies et al proposed Naïve 

bayes algorithm based on LogNums filter were 

implemented to achieve the desired results with 71%. 

Shanthini et al focused high performance analysis based 

on machine learning approach.  

Akalya devi et al analyzed a hybrid feature selection 

method (Correlation based feature selection, Chi Squared , 

OneR, and Gain  ratio, Naïve Bayes, RBF Network, J48) 

to be performed. the performance measures like Mean 

Absolute Error(MAE), Root Mean Squared Error(RMSE). 

Hassan Najadat proposed that modified Ripple DOwn 

Rule learns the defect prediction based on two different 

algorithm such as CLIPPER and RIDOR. This paper is 

carried out with static code attributes finally improve the 

Data base 

To create a quality software 

Check the correctness 

of the software 

Faulty 
Non faulty 
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quality of the software and high portability with 

effectiveness. 

III. METHODOLOGY 

The following steps are the functionality of the paper 

represented as follow as 

 Data set are collected from NASA MDP. 

 Construct the Distance measures based clustering 

algorithm. 

 Performance measures are discussed based on 

proposed algorithm and existing algorithm. 

 Comparative analysis are performed based on 

Euclidean based K-Means Clustering with K-Jensen 

Shannon Entropy Model based Clustering Algorithm 

A. Data set used 

Software fault prediction is important feature in improving 

the software Quality metrics. In this paper we are used 

CM1, PC1, KC1, KC2 and PC4 collected from NASA 

MDP. These datasets are publicly available PROMISE 

project storage. Analyze of this paper we are used five 

different data. Each data is consisting of number of 

modules. The quality of this module is described by its 

error rate. Error rate is described as “number of defects in 

the module, and Defect, whether or not the module has 

any defects.  The table 1 shows that description about the 

data set. 
TABLE 1: DATA SET 

Data 
Modules/ 

instances 
Language Description 

CM1 498 C Space craft instrument 

PC1 1109 C Earth orbiting satellite 

KC1 2109 C++ 
Storage management 

for ground data 

KC2 522 C++ Science data processing 

PC4 1458 C 
Flight software for earth 

orbiting satellite 

B. Euclidean based K-Means Clustering Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig-2 K-Means Clustering Algorithm with Euclidean Distance 

Distance measure is essential steps in clustering that will 

verify how the similarity of two elements is calculated. In 

this paper, K-Means clustering algorithm is based on 

Euclidean distance measure. In last two hundred decades, 

Euclid stated that shortest distance between two points. 

C.   K-Jensen Shannon Entropy Model based 

Clustering Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig-3 K-Jensen Shannon Entropy Model 
 based Clustering Algorithm 

D. Performance Measures 

The proposed system is evaluated several performance 

metrics such as true positive rate, false positive rate, 

precision, recall, F-Measure and accuracy. 

True positive rate: This measure is projected by the 

modules that are predicted positively as the results 

specified at the end. The general for mat is represented 

below equation. 

True positive rate = true positive rate / (true positive 

rate + false negative rate 

False Positive rate:  This measure is projected by the 

modules that are predicted incorrectly categorized ad class 

x/ actual total of all classes, except x. 

False positive rate = false positive rate / (true negative 

+ true negative rate 

Precision: precision gives positive predicate values and it 

process values or product quality or exactness. 

Precision = True positive / (True Positive + False 

positive) 

Recall:  recall gives sensitive of problem and it process 

values or product quantity or completeness. This measure 

is used to recognize total number of modules.   

Recall = true positive / (true positive + false negative) 

F-Measure:  it is one of the quality measures of the 

modules. The general formula is represented as given 

below 

F-Measure = 2* Precision * recall / (precision + recall) 

Let X = {X1, X2…Xk} be set of data and 

 M = {m1, m2…..mk} 

1. Select a number (K) of cluster centers – 

centroid at random 

2. Assign every item to its nearest cluster center 

using Euclidean distance 
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4. Repeat steps 2, 3 until convergence yet 

Let X = {X1, X2…Xk} be set of data and 

M = {m1, m2…..mk} 

5. Select a number (K) of cluster centers – 

centroid at random 

6. Assign every item to its nearest cluster 

center using  Jensen- Shannon distance 
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8. Repeat steps 2, 3 until convergence yet 
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Accuracy: it is calculated as a number of instances 

predicted positively divided by total number of instances 

Accuracy = (true positive + true negative) / (P+N) 

IV. EXPERIMENTAL RESULTS 

In our experimental analysis, five different metrics are 

analyzed namely CM1, PC1, KC1, KC2 and PC4. These 

dataset contains both structure and object oriented.  In this 

work carried out several performance metrics such as true 

positive rate, false positive rate, precision, recall, F-

Measure and accuracy for evaluated our proposed work 

with existing system. In our proposed system is effective 

and high robustness when compared to the Existing 

methods 
TABLE 1: CLASSIFIED INSTANCES FOR CM1 

Method 

Approximately 

Classified 

Instances 

Inaccurately 

classified 

instances 

Total 

instances 

K-Means 425 73 498 

Proposed 445 53 498 

TABLE 2: PERFORMANCE ANALYSIS FOR CM1 

Method/ 

Performance 

measures 

K-Means Proposed 

TP Rate 0.85 0.90 

FP Rate 0.61 0.70 

Precision 0.83 0.85 

Recall 0.85 0.87 

F-Measure 0.85 0.86 

Accuracy 0.83 0.88 
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Fig- 4 Performance Analysis for CM1 Data set 

TABLE 3: CLASSIFIED INSTANCES FOR PC1 

Method 

Approximately 

Classified 

Instances 

Inaccurately 

Classified 

instances 

Total 

instances 

K-Means 965 144 1109 

Proposed 1025 84 1109 

                                                                                          

 

TABLE 4: PERFORMANCE ANALYSIS FOR PC1 

Method/ 

Performance 

measures 

K-Means Proposed 

TP Rate 0.92 0.96 

FP Rate 0.65 0.69 

Precision 0.88 0.90 

Recall 0.89 0.90 

F-Measure 0.89 0.91 

Accuracy 0.89 0.92 
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Fig- 5 Performance Analysis for PC1 Data set 

 
TABLE 5: CLASSIFIED INSTANCES FOR KC1 

Method 

Approximately 

Classified 

Instances 

Inaccurately 

classified 

instances 

Total 

instances 

K-Means 

 
965 144 1109 

Proposed 1025 84 1109 
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Fig- 6 Performance Analysis for KC1 Data set 
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TABLE 6: PERFORMANCE ANALYSIS FOR KC1 

Method/ 

Performance 

measures 

 

    K-Means  

 

Proposed  

TP Rate 0.92 0.96 

FP Rate 0.65 0.69 

Precision 0.88 0.90 

Recall 0.89 0.90 

F-Measure 0.89 0.91 

Accuracy 0.89 0.92 

TABLE 7: CLASSIFIED INSTANCES FOR KC2 

 

 

Method 

 

Approximately 

Classified 

Instances 

 

Inaccurately 

Classified 

instances 

 

Total  

instances 

K-Means 

 

470 52 522 

Proposed 501 21 522 

TABLE 8: PERFORMANCE ANALYSIS FOR KC2 

Method/ 

Performance 

measures 

 

    K-Means  

 

Proposed  

TP Rate 0.90 0.94 

FP Rate 0.63 0.67 

Precision 0.80 0.90 

Recall 0.87 0.90 

F-Measure 0.88 0.91 

Accuracy 0.86 0.94 

 

 
Fig- 7 Performance Analysis for KC2 Data set 

TABLE 9: CLASSIFIED INSTANCES FOR PC4 

Method 

Approximately 

Classified 

Instances 

Inaccurately 

Classified 

instances 

Total 

instances 

K-Means 

 
1280 178 1458 

Proposed 1325 155 1458 

 

 

TABLE 10: PERFORMANCE ANALYSIS FOR PC4 

Method/ 

Performance 

measures 

K-Means Proposed 

TP Rate 0.91 0.95 

FP Rate 0.70 0.75 

Precision 0.89 0.91 

Recall 0.87 0.93 

F-Measure 0.85 0.95 

Accuracy 0.90 0.98 

 
Fig- 8 Performance Analysis for PC4 Data set 

V. CONCLUSION 

The main intention of this work is to analyze the 

performance of K-Means clustering algorithm with 

Euclidean Distance and K-Jensen Shannon Entropy Model 

based Clustering Algorithm using different metrics of 

NASA datasets. Based on this performance analysis we 

conclude that our proposed approach is suitable for small 

and large data set. The complexity factor is low when 

compared to the existing approach. The future 

enhancement of this work is planned to measure different 

similarity measures with Fuzzy logic approach based on 

Equivalence and Composite relations. 
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